24 research outputs found

    A restriction of Euclid

    Full text link
    Euclid is a well known two-player impartial combinatorial game. A position in Euclid is a pair of positive integers and the players move alternately by subtracting a positive integer multiple of one of the integers from the other integer without making the result negative. The player who makes the last move wins. There is a variation of Euclid due to Grossman in which the game stops when the two entrees are equal. We examine a further variation that we called M-Euclid in which the game stops when one of the entrees is a positive integer multiple of the other. We solve the Sprague-Grundy function for M-Euclid and compare the Sprague-Grundy functions of the three games

    When are translations of P-positions of Wythoff's game P-positions?

    Full text link
    We study the problem whether there exist variants of {\sc Wythoff}'s game whose ¶\P-positions, except for a finite number, are obtained from those of {\sc Wythoff}'s game by adding a constant kk to each ¶\P-position. We solve this question by introducing a class \{\W_k\}_{k \geq 0} of variants of {\sc Wythoff}'s game in which, for any fixed k≥0k \geq 0, the ¶\P-positions of \W_k form the set {(i,i)∣0≤i<k}∪{(⌊ϕn⌋+k,⌊ϕ2n⌋+k)∣n≥0}\{(i,i) | 0 \leq i < k\}\cup \{(\lfloor \phi n \rfloor + k, \lfloor \phi^2 n \rfloor + k) | n\ge 0\}, where ϕ\phi is the golden ratio. We then analyze a class \{\T_k\}_{k \geq 0} of variants of {\sc Wythoff}'s game whose members share the same ¶\P-positions set {(0,0)}∪{(⌊ϕn⌋+1,⌊ϕ2n⌋+1)∣n≥0}\{(0,0)\}\cup \{(\lfloor \phi n \rfloor + 1, \lfloor \phi^2 n \rfloor + 1) | n \geq 0 \}. We establish several results for the Sprague-Grundy function of these two families. On the way we exhibit a family of games with different rule sets that share the same set of ¶\P-positions

    Variations of the Game 3-Euclid

    Get PDF

    Some Remarks on End-Nim

    Get PDF
    corecore